Учебники по популярным профессиям
на asv0825.ru

>>> Перейти на мобильную версию сайта >>>

Учебное пособие

Сварка

       

Технология кислородной резки

Поверхность разрезаемого металла должна быть хорошо очищена от грязи, краски, окалины и ржавчины. Для удаления окалины, краски и масла следует медленно провести пламенем горелки или резака по поверхности металла вдоль намеченной линии разреза. При этом краска и масло выгорают, а окалина отстает от металла. Затем поверхность металла окончательно зачищают металлической щеткой.

Процесс резки начинают с нагревания металла. Подогревающее пламя резака направляют на край разрезаемого металла и нагревают до температуры воспламенения его в кислороде (практически почти до температуры плавления). Затем пускают струю режущего кислорода и перемещают резак вдоль линии разреза. Кислород сжигает верхние нагретые слои металла. Теплота, выделяющаяся при сгорании, нагревает нижележащие слои металла до температуры воспламенения и поддерживает непрерывность процесса резки.

При резке листового материала толщиной 20...30 мм мундштук резака устанавливают вначале под углом 0...5° к поверхности, а затем — под углом 20...30° в сторону, обратную движению резака. Это ускоряет процесс разогрева металла и повышает производительность.

Резку металла большой толщины выполняют следующим образом. Мундштук резака вначале устанавливают перпендикулярно поверхности разрезаемого металла, так чтобы струя подогревающего пламени, а затем и режущего кислорода располагалась вдоль вертикальной грани разрезаемого металла. После прогрева металла до температуры воспламенения пускают струю режущего кислорода. Перемещение резака вдоль линии резания начинают после того, как в начале этой линии металл будет прорезан на всю его толщину. Чтобы не допустить отставания резки в нижних слоях металла, в конце процесса следует постепенно замедлить скорость перемещения резака и увеличить его наклон до 10...15° в сторону, обратную движению. Рекомендуется начинать процесс резки с нижней кромки, как показано на рис. 98. Предварительный подогрев до 300...400°С позволяет производить резку с повышенной скоростью. Скорость перемещения резака должна соответствовать скорости горения металла. Если скорость перемещения резака установлена правильно, то поток искр и шлака вылетает из разреза прямо вниз, а кромки получаются чистыми, без натеков и подплавлений. При большой скорости перемещения резака поток искр отстает от него, металл в нижней кромке не успевает сгорать и поэтому сквозное прорезание прекращается. При малой скорости сноп искр опережает резак, кромки разреза оплавляются и покрываются натеками.

Процесс резки с нижней кромки

Рис. 98.

Давление режущего кислорода устанавливают в зависимости от толщины разрезаемого металла и чистоты кислорода. Чем выше чистота кислорода, тем меньше давление и расход кислорода. Ширина и чистота разреза зависят от способа резки и толщины разрезаемого металла. Машинная резка дает более чистые кромки и меньшую ширину разреза, чем ручная резка. Чем больше толщина металла, тем больше ширина разреза.

ГОСТ 14792—80 «Детали и заготовки, вырезаемые кислородной и плазменно-дуговой резкой. Точность, качество поверхности реза» предусматривает предельные отклонения номинальных размеров деталей (заготовок) в зависимости от способа резки, размеров деталей (заготовок) и толщины металла.

Процесс резки вызывает изменение структуры, химического состава и механических свойств металла. При резке низкоуглеродистой стали тепловое влияние процесса на ее структуру незначительно. Наряду с участками перлита появляется неравновесная составляющая сорбита, что даже несколько улучшает механические свойства металла. При резке стали, имеющей повышенное содержание углерода а также легирующие примеси, кроме сорбита, образуются троостит и даже мартенсит. При этом сильно повышатся твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образование холодных трещин. Изменение химического состава стали проявляется в образовании обезуглероженного слоя металла непосредственно на поверхности резания в результате выгорания углерода под воздействием струи режущего кислорода. Несколько глубже находится участок с большим содержанием углерода, чем у исходного металла. Затем по мере удаления от разреза содержание углерода уменьшается до исходного. Так же происходит выгорание легирующих элементов стали.

Механические свойства низкоуглеродистой стали при резке почти не изменяются. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становятся более твердыми и дают трещины в зоне резания.

Нержавеющие хромистые и хромоникелевые стали, чугуны, цветные металлы и их сплавы не поддаются обычной газокислородной резке, так как не удовлетворяют указанным выше условиям.

Для этих металлов применяют кислородно-флюсовую резку, сущность которой заключается в следующем. В зону резания с помощью специальной аппаратуры непрерывно подается порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повышается температура места разреза. Кроме того, продукты сгорания флюса реагируют с тугоплавкими оксидами и дают жидкотекучие шлаки, легко вытекающие из места разреза.

В качестве флюса используется мелкогранулированный железный порошок марки ПЖ5М (ГОСТ 9849—74). При резке хромистых и хромоникелевых сталей во флюс добавляют 25...50% окалины. При резке чугуна добавляют 30...35% доменного феррофосфора. При резке меди и ее сплавов применяют флюс, состоящий из смеси железного порошка с алюминиевым порошком (15...20%) и феррофосфором (10...15%).

Резку производят установкой УРХС-5, разработанной ВНИИавтогенмашем и состоящей из флюсопитателя и резака. Установка используется для ручной и машинной кислородно-флюсовой резки высоколегированных хромистых и хромоникелевых сталей толщиной 10...200 мм при скорости резания 230...760 мм/мин. На 1 м разреза расходуется кислорода 0,20...2,75 м3 , ацетилена— 0,017...0,130 м3 и флюса — 0,20...1,3 кг.

При кислородно-флюсовой резке некоторая часть теплоты подогревающего пламени уходит на нагревание флюса. Поэтому мощность пламени берется на 15...25% выше, чем при обычной газовой резке. Пламя должно быть нормальным или с некоторым избытком ацетилена. Расстояние от торца мундштука резака до поверхности разрезаемого металла устанавливается 15...25 мм. При малом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и . обратные удары. Кроме того, наблюдается перегрев мундштука, приводящий к нарушению процесса резки. Угол наклона мундштука должен составлять 0...10° в сторону, обратную направлению резки. Хорошие результаты дает предварительный подогрев. Хромистые и хромоникелевые стали требуют подогрева до 300...400°С, а сплавы меди — до 200...350°С.

Скорость резки зависит от свойств металла и его толщины. Чугун толщиной 50 мм режут со скоростью 70...100 мм/мин. При этом на 1 м разреза расходуется 2...4 м3 кислорода, 0,16...0,25 м3 ацетилена и 3,5...6 кг флюса. Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромоникелевых сталей расход всех материалов снижается почти в 3 раза.

Рейтинг@Mail.ru
Рейтинг@Mail.ru