Учебники по популярным профессиям
на asv0825.ru

Бетонные
работы

       

§ 47. Электропрогрев смеси в конструкциях

Способ электропрогрева бетона в конструкциях основан на использовании выделяемой теплоты при прохождении через него электрического тока. Для подведения напряжения используют электроды различной конструкции и формы. В зависимости от расположения электродов прогрев подразделяют на сквозной и периферийный. При сквозном прогреве электроды располагают по всему сечению, а при периферийном — по наружной поверхности конструкций. Во избежание отложения солей на электродах и прилегающей зоне бетона постоянный ток использовать запрещается.

Для сквозного прогрева колонн, балок, стен и других конструкций, возводимых в деревянной опалубке, применяют стержневые электроды (рис. 140, а), которые изготовляют из отрезков арматурной стали диаметром до 6 мм с заостренным концом. Для установки электродов высверливают отверстия в одном из щитов опалубки таким образом, чтобы электроды не соприкасались с арматурой каркаса. Затем вставляют электрод и ударом молотка фиксируют его в противоположном щите. Расстояние между электродами по горизонтали и вертикали принимают по расчету. Затем осуществляют их коммутацию.

Рис. 140. Электроды для прогрева бетона:
а — стержневые электроды, б — плавающие рамочные, в — нашивные пластинчатые, г — плавающие пластинчатые, д — струнные

Для периферийного прогрева при слабом армировании и когда исключен контакт с арматурой применяют плавающие электроды в виде замкнутой петли (рис. 140б). При прогреве плоских конструкций (например, подготовка под полы, дорожные покрытия, ребристые плиты) применяют плавающие пластинчатые электроды (рис. 140, г).

В качестве (плавающих электродов применяют полосовую сталь толщиной 3...5, шириной 30...50 мм. Расстояние между ними определяют расчетом. Электроды должны контактировать с бетоном и могут быть несколько утоплены в него. Между ними и бетоном не должно быть зазора. Для этого их нагружают токонепроводящими материалами (досками, кирпичами), сами электроды должны быть без искривлений и перегибов.

Нашивные электроды (рис. 140, в), так же как и плавающие, относятся к элементам периферийного прогрева. Их изготовляют из круглой арматурной стали или металлических пластин толщиной 2...3 мм. Электроды нашивают на щиты опалубки для ее установки, а концы загибают под углом 90° и выводят наружу. После установки опалубки производят коммутацию электродов. Необходимо помнить, что электроды не должны иметь контакта с арматурой конструкции во избежание короткого замыкания. Поэтому при установке арматурных каркасов используют пластмассовые прокладки и фиксаторы, которые обеспечивают заданную толщину защитного слоя и предотвращают контакт с электродами.

При изготовлении длинномерных конструкций (колонн, ригелей, балок, свай) используют струнные электроды (рис. 140, д). Выполняют их из гладкой арматурной стали диаметром 4...6 мм. Располагают в центральной части сечения конструкции. Концы электродов дггибают под углом 90° и выводят через отверстия в опалубке для подключения коммутирующих проводов.

При периферийном прогреве массивных конструкций, а также элементов зданий малой массивности (стен, резервуаров, ленточных фундаментов) в качестве электродов используют металлические щиты опалубки и арматуру конструкции. В первом случае используют однофазный ток (рис. 141, а): первую фазу подключают к щитам 2 опалубки, а нулевую — к арматурному каркасу 1. Во втором случае (рис. 141,б) арматурный каркас не подключают к сети, а каждый элемент опалубки присоединяют к одной из трех фаз. Изоляторами между щитами опалубки служат деревянные брусья 3.

Рис. 141. Схема прогрева бетона с использованием в качестве электродов металлических щитов опалубки (а) и арматуры (б):
1 — арматурный каркас, 2 — металлический щит опалубки, 3 — деревянный брус

Пример электропрогрева бетона колонны с использованием щитов металлической опалубки в качестве электродов приведен на рис. 142. Между опалубочными щитами 2 устанавливают диэлектрические прокладки 3. Напряжение от трансформатора 5 через кабели 4 передаются щитам опалубки соответственно первого, второго и третьего ярусов (при трехфазном токе). Мощность трансформатора подбирается таким образом, чтобы обеспечить прогрев одновременно 6...9 колонн.

Рис. 142. Электропрогрев бетона колонны с помощью щитов опалубки:
1 — арматурный каркас, 2 — щиты опалубки, 3 — диэлектрические прокладки, 4 — кабели, 5 — трансформатор

Однородность температуры поля зависит от схемы расположения электродов и расстояния между ними. Чем ближе друг к другу электроды и чем сильнее армирование конструкции, тем больше будут температурные перепады в твердеющем бетоне, в результате чего режим твердения будет неоднородным и качество бетона ухудшится. Поэтому в каждом конкретном случае рассчитывают схему расположения электродов с учетом степени армирования конструкции. При напряжении на электродах 50...60 В расстояние между электродами и арматурой должно быть не менее 25 мм, а при 70...85 В — не менее 40 мм.

Стержневые электроды применяют, как правило, в виде плоских групп, которые подключают к одной фазе. При большой длине конструкций вместо одного электрода устанавливают два или три по длине.

Допустимую длину полосового, стержневого или струнного электродов принимают путем расчета минимальной потери напряжения по его длине.

Для получения высокого качества железобетона строго соблюдают температурный режим прогрева, который разделяют на три стадии:

  1. Подъем температуры бетона. Скорость подъема зависит от модуля поверхности:

  2. Изотермический прогрев. На этой стадии в бетоне поддерживают заданную температуру. Продолжительность стадии зависит от вида конструкции (прогревают до получения необходимой прочности бетона). Чаще всего на стадии изотермического прогрева достигают критическую прочность бетона.
  3. Остывание конструкций. При остывании до 0° С бетон продолжает набирать прочность, что особенно важно при бетонировании массивных конструкций.

Для конструкций с Мп=6...9 применяют режим, при котором к моменту остывания бетон должен набрать прочность не менее критической. Для конструкций с Мп=9...15 режим такой же, но в конце изотермического прогрева бетон должен набрать не менее 50% прочности. Этим обстоятельством определяется время изотермического прогрева. При изготовлении предварительно напряженных конструкций к моменту окончания изотермического прогрева прочность бетона должна быть не менее 80%.

Нарушение технологического режима электропрогрева может привести к пережогу бетона в результате перегрева бетонной смеси выше 100° С, недостаточному набору прочности, образованию трещин в результате неоднородности температурного поля.

Температура разогрева, бетона зависит от конструкции и вида цемента (табл. 15).

Таблица 15. Максимально допускаемые
температуры бетона, ° С, при электропрогреве

Максимальную температуру прогрева более массивных конструкций назначают из условия получения равномерного температурного поля и исключения в них высоких термонапряжений.

Необходимую температуру прогрева бетона получают измерением напряжения, периодическим отключением и включением всего прогрева или части электродов.

Скорость остывания бетона также регулируют (табл. 16).

Таблица 16. Допускаемая скорость
остывания бетонных конструкций

Если скорость остывания превысит допустимую, в бетонной смеси возникнут температурные напряжения, способные разрушить структуру бетона или образовать в нем трещины. Регулируют скорость остывания путем правильного подбора теплоизоляции опалубки.

При электропрогреве бетонных конструкций с помощью контрольно-измерительных приборов постоянно контролируют напряжение, силу тока и температуру бетона. В первые 3 ч прогрева температуру измеряют каждый час, а затем — через 2...3 ч.

Перед началом бетонирования проверяют правильность уста новки электродов и их коммутацию, качество утепления опалубки, определяют надежность контактов электродов с токоподводящими проводами.

При электропрогреве необходимо тщательно выполнять требования электробезопасности и охраны труда.

Рейтинг@Mail.ru
Рейтинг@Mail.ru